PALLADIUM ASSISTED N-METHYL ACTIVATION OF p-SUBSTITUTED N,N-DIMETHYLANILINES

Tsutomu SAKAKIBARA* and Tomoko HAMAKAWA

Institute of Chemistry, College of Liberal Arts Kagoshima University, Kōrimoto, Kagoshima 890

Intermediates in the reaction of N,N-dimethylanilines with palladium (II) acetate were trapped by acetate ion or oxygen to give N-methyl-oxygenated and demethylated products, while the trapping by other anilines gave homo- and cross-coupling cyclodimers. The reactions proceed via radical cation formation induced by the palladium salt.

The oxidative cyclodimerization of N,N-dimethylanilines containing a nobel carbon-carbon bond formation between N-methyl carbon and aromatic ring carbon was previously communicated. 1) In a course of further investigation, trapping experiments of the reaction intermediates were carried out. Therein, some new reactions of the N-methyl group activated by a radical cation formation from N,N-dimethylaniline and palladium(II) acetate were found.

A mixture of palladium(II) acetate (5 mmole), sodium acetate (20 mmole), and N, N-dimethylanisidine ($\underline{1a}$, 10 mmole) was heated at 80° for 5 h in a mixed solvent (80 ml) of acetic acid and benzene (1:1) under an atmosphere of nitrogen. After usual work-up, the aniline dimers, $\underline{2aa}$ (10.2%) and $\underline{3a}$ (28.3%), were isolated together with $\underline{4a}$ (3.4%), $\underline{5a}$ (2.0%), and $\underline{6a}$ (52.1%). A similar reaction of N,N-dimethyl-p-toluidine ($\underline{1b}$) also gave rise to formation of $\underline{2bb}$ (34.5%), $\underline{4b}$ (2.5%), $\underline{5b}$ (1.0%), and $\underline{6b}$ (27.0%). The isolated dimer ($\underline{3a}$) gave the cyclic dimer ($\underline{2aa}$) quantitatively while $\underline{5a}$ produced 6a in good yield (75%) by further oxidation with palladium(II) acetate.

The formation of $\underline{4}$ and $\underline{5}$ suggests an intermediary of arylaminomethanol acetate $(\underline{7})$ which may undergo ready hydrolysis and deformylation²⁾ to give $\underline{5}$ or further acetoxylation and decomposition³⁾ to form $\underline{4}$. The acetoxylation on N-methyl group may take place concurrently with the cyclodimerization.

The reaction of a mixture of $\underline{1a}$ (10 mmole) and $\underline{1b}$ (10 mmole) with palladium(II)

Table 1. Formation of Homo- and Cross-coupling Cyclodimers.

Reactants ^a	Pro	oducts
$(\underline{1m} \text{ and } \underline{1n})$	Cyclodimers (%) ^b	Composition (%)
<u>la</u> – <u>lb</u>	52.2	<u>2aa</u> (26.2) <u>2bb</u> (50.6) <u>2ab</u> (23.2)
<u>la</u> - <u>lc</u>	17.8	$\underline{2aa}$ (8.2) $\underline{2cc}$ (59.0) $\underline{2ac}$ (32.8)
<u>la</u> – <u>ld</u>	8.7	<u>2aa</u> (84.2) <u>2dd</u> (5.8) <u>2ad</u> (10.1)
<u>lc</u> - <u>ld</u>	19.7	2cc (91.8) 2dd (0.0) 2cd (8.1)

a. Equimolar amounts of \underline{lm} and \underline{ln} were used to react with a half equivalent of Pd(II) acetate. b. Total yields of isolated cyclodimers based on moles of used Pd(OAc)₂

acetate (5.0 mmole) was carried out at 80° for 5 h in a solvent (80 ml) of acetic acid -benzene (1:1) under nitrogen. The work-up of the reaction mixture gave the homocoupling dimers, $\underline{2aa}$ (13.7%) and $\underline{2bb}$ (26.4%), and the cross-coupling dimer $\underline{2ab}$ (12.1%), along with recovered $\underline{1a}$ (79.5%) and $\underline{1b}$ (55.9%). The compound $\underline{2ab}$ was characterized as follows; mp 136-137°C, nmr (CDCl $_3$, TMS): δ (ppm) 2.85 (s, 3H, N-CH $_3$), 2.89 (s, 3H, N-CH $_3$), 2.33 (s, 3H, CH $_3$), 3.88 (s, 3H, OCH $_3$), 4.33 (s, 4H, -CH $_2$ -), and 6.95-7.37 (m, 6H, Ar-H), 10M mass; $C_{18}H_{22}N_2O$ (m/e 282.1729). Analogous reactions are summarized in Table 1. The relative reactivity ratio of used N,N-dimethylanilines for cyclodimerization was calculated as $\underline{1a}$ (1.0), $\underline{1b}$ (1.64), $\underline{1c}$ (3.07), and $\underline{1d}$ (0.12), respectively. It is notable that $\underline{1b}$ or $\underline{1c}$ is more reactive than $\underline{1a}$. The fact clearly indicates that the more electron-rich are o-positions, the more efficiently does the reactant $\underline{1}$ result in cyclodimerization, $\underline{^4}$) and thus that the cyclodimerization may proceed via an attack of cationic species derived from N-methyl groups onto aromatic o-positions.

On the other hand, the reaction of $\underline{1a}$ under a stream of air gave $\underline{4a}$ (10%), $\underline{5a}$ (23%), and $\underline{6a}$ (32%), but no cyclodimers were detected. The formation of cationic N-methyl species $(\underline{9})$ may be disturbed by oxygen. Consequently, the present reactions may contain an initial cation radical intermediate ($\underline{8}$) generated by SET from 1 to Pd(II).

References 1) T. Sakakibara and H. Matsuyama, Chem. Lett., $\underline{1980}$, 1331. 2) O. Ogawa, Y. Kawazoe, and Y. Sawanishi, Chem. Pharm. Bull. (Japan), $\underline{28}$, 3029 (1980). 3) T. Itahara and T. Sakakibara, Bull. Chem. Soc., Jpn., $\underline{52}$, 631 (1979). 4) Methyl group ($\sigma_{\rm m}$ value, -0.07) activates m-positions more than methoxy group (+0.12); H. H. Jaffe, Chem. Rev., 53, 191 (1953).